

Some Economics of Carbon Leakage

Carolyn Fischer
Resources for the Future
October, 2011

Carbon Leakage

- Increase in foreign emissions associated with a policy-induced decrease in domestic emissions
- 10-30% in most trade-oriented climate policy models
- Modest overall but can be large for certain individual sectors

Leakage Rates for Europe

Channels for Carbon Leakage

- Shifting economic activity and investment ("competitiveness")
- Global energy market response to demand shifts
- Intertemporal response of fossil resource owners ("green paradox")
 - Adjustments in scarcity rents and the path of fossil fuel extraction in response to changing demand expectations.

Options for Coping with Leakage

- Global carbon pricing
 - Best option and only one to deal with energy market leakage
- Measures to address competitiveness-related leakage
 - Modest effects on overall leakage
 - But important for certain sectors and for political acceptability of stringent regulation
 - Larger effects if useful as leverage
- Weakening policies
 - Lower carbon prices, exempting exposed sectors

Option (1): Output-based rebating

- Allocates allowances based on an industry average performance benchmark
 - Updated, not pure "grandfathering"
- Mitigates product price increase, which dampens leakage but also conservation incentives
 - Best applied narrowly to EITE sectors
 - Unable to distinguish among performance of trading partners; need to phase out as coalition expands

% Change in Production, of which Change in Net Exports

Option (2): Border Carbon Adjustment

- Taxing imports based on a measure of their carbon content (and refunding for exports)
- Ensures consumers pay carbon-inclusive price, regardless of origin
 - Dampens leakage and maintains conservation incentives
- Also requires narrow scope of application
 - Can improve cost-effectiveness of carbon pricing if applied narrowly to sectors most vulnerable to leakage
 - E.g., cement, steel, aluminum
 - Costly if implemented too broadly

Global Cost Savings of Antileakage Measures, and Global Costs of Carbon Price

Economic Adjustment Cost for China

Consumption Effects of Joint U.S. and EU Action by Policy Option

Changes in Exports of EITE Products (Joint Policies)

Global Leakage Effects

Role of Revenue Recycling

- Pre-existing taxes distort labor (and capital) markets
 - Higher prices from regulation lower real wage, reducing labor supply and tax revenue: "Tax Interaction"
 - It matters how we use the revenues

Sensitivity of U.S. Welfare Changes

to Stringency of Emissions Reduction Target (Millions of 2004 USD)

Compared to 100% recycling

Sensitivity of Global Net Welfare Changes

to Stringency of Emissions Reduction Target (Millions of 2004 USD)

Compared to 100% recycling

Conclusions and Caveats

- OBR and BCA have potential to improve efficiency and reduce leakage from unilateral climate policy
 - If appropriately circumscribed
 - Must phase out OBR as more trade partners regulate CO2
- Not recycling the revenue is costly
- Serious practical challenges for both OBR and BCA
 - defining appropriate metrics for eligibility, consistent units of production, benchmarks that do not mute the effectiveness of the carbon price, embodied carbon calcs
- Most models (like ours) lack sufficient sectoral detail to capture these issues and further research is needed.

- Fischer, C. and A.K. Fox. 2010. "On the Scope for Output-Based Rebating in Climate Policy: When Revenue Recycling Isn't Enough (or Isn't Possible)" RFF DP 10-69.
- Boehringer, C., C. Fischer, and K.E. Rosendahl. 2011. "Cost-Effective Unilateral Climate Policy Design: Size Matters" RFF DP 11-34.
- Boehringer, C., C. Fischer, and K.E. Rosendahl (2010) "The Global Effects of Subglobal Climate Policies" B.E. Journal of Economic Analysis & Policy. 10 (2) (Symposium): Article 13.
- Fischer, C. and A. K. Fox. 2009. Comparing Policies to Combat Emissions Leakage: Border Tax Adjustments versus Rebates RFF DP 09–02.

Leakage Rates and Policy Options

Sensitivity of Carbon Tax Required

to Stringency of Emissions Reduction Target (USD per ton CO2)

• OBR to electricity drives up prices 1/3

Sensitivity of Leakage Rate

to Stringency of Emissions Reduction Target (% of US Reductions)

Sensitivity of U.S. Welfare Changes

to Stringency of Emissions Reduction Target (Millions of 2004 USD)
Compared to 100% Recycling (**Energy Intensive Sectors**)

Sensitivity of Global Net Welfare Changes

to Stringency of Emissions Reduction Target (Millions of 2004 USD) Compared to 100% Recycling (**Energy Intensive Sectors**)

